
J .  Fluid Mech. (1967), vol. 28, part 1, p p .  29-42 

Printed in &eat Britain 
29 

Finite amplitude convective cells and continental drift 

By D. L. TURCOTTE 
Department of Engineering Science, University of Oxford? 

AND E. R. OXBURGH 
Department of Geology, University of Oxford 

(Received 14 July 1966) 

A solution is obtained for steady, cellular convection when the Rayleigh number 
and the Prandtl number are large. The core of each two-dimensional cell contains 
a highly viscous, isothermal flow. Adjacent to the horizontal boundaries are thin 
thermal boundary layers. On the vertical boundaries between cells thin thermal 
plumes drive the viscous flow. The non-dimensional velocities and heat transfer 
between the horizontal boundaries are found to be functions only of the Rayleigh 
number. The theory is used to test the hypothesis of large scale convective cells 
in the earth’s mantle. Using accepted values of the Rayleigh number for the 
earth’s mantle the theory predicts the generally accepted velocity associated with 
continental drift. The theory also predicts values for the heat flux to the earth’s 
surface which are in good agreement with measurements carried out on the ocean 
floors. 

1. Introduction 
This investigation concerns the steady cellular convection which occurs when 

a layer of fluid in a force field is heated from below. The analysis will be restricted 
to the two-dimensional problem with free-surface boundary conditions. The 
solution of the linearized stability problem has been given by Rayleigh (1916). 
He found that there was an onset of convective motion when the non-dimensional 
parameter R = a(T,,- T , , ) @ g / ~ u  exceeds a critical value, where a is the co- 
efficient of thermal expansion, g the acceleration of gravity, K the thermal dif- 
fusivity, 11 the kinematic viscosity, d the thickness of the layer of fluid, T,, the 
temperature of the hot lower surface, and T,, the temperature of the cold upper 
surface. This parameter is now known as the Rayleighnumberand for free-surface 
boundary conditions the critical Rayleigh number for the onset of convection is 
657. The wavelength of the convective motion is h = 28d. 

When the Rayleigh number is large compared with the critical Rayleigh num- 
ber the linear theory is no longer valid and it is necessary to solve a set of non- 
linear partial differential equations. Extensions of the linear theory into the non- 
linear regime have been given by Malkus & Veronis (1958), Kuo (1961) and 
Platzman (1965). However, these theories are expansions about the critical 

t On leave from the Graduate School of Aerospace Engineering, Cornell University, 
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Rayleigh number and are not expected to be valid when the Rayleigh number is 
large compared with the critical Rayleigh number. Numerical computations of 
cellular convection for Prandtl numbers of order unity have been given by 
Fromm (1965). 

In  non-linear convection the Prandtl number, Yr = V / K ,  enters the solution as 
well as the Rayleigh number. It has been pointed out by Kuo (1961) that for 
large Rayleigh numbers and large Prandtl numbers an isothermal core develops 
in each convective cell. Similar results have been obtained for natural convection 
in closed cavities by Batchelor (1954) and Weinbaum (1964). The analysis given 
in this paper is concerned with this limit, i.e. the ltayleigh number is large com- 
pared with the critical Rayleigh number and the Prandtl number is large com- 
pared with one. A model of the convective motion is used in which the core of each 
cell is highly viscous and isothermal. Adjacent to the horizontal boundaries are 
thin thermal boundary layers and along the vertical boundaries between cells 
are thin thermal plumes. When the Prandtl number is large the onset of unsteady, 
turbulent convection is inhibited. 

One of the most interesting applications of cellular convection is in the earth’s 
mantle. The hypothesis of large scale cellular convection is favoured as the 
driving mechanism of continental drift. Numerous workers have postulated the 
existence of such currents both on theoretical grounds and in order to explain a 
variety of thermal and kinetic phenomena at the earth’s surface. Although the 
earth’s mantle is composed of crystalline ferromagnesium silicates, over long 
periods of time and a t  high temperatures the mantle is expected to display rheid 
behaviour. 

Convective currents at  present operating in the mantle are thought to have the 
form of elongated rolls, tens of thousands of kilometres long and several thousand 
kilometres wide (Girdler 1965). The regions of converging, falling convection 
may be characterized by deep and intermediate focus earthquakes. Surface 
features may include island-arc areas, deep sea trenches, and other compressional 
phenomena. The regions of rising, diverging currents are associated with shallow 
seismicity. Surface features are the mid-oceanic ridges; e.g. the Mid-Atlantic 
Ridge and the East Pacific Rise. These ridges form part of a world-wide oceanic 
ridge system and display extensional features which suggest that the crust is 
moving away from them on either side. In  addition the ridges are characterized 
by volcanic activity and a surface heat flux which may be as much as six times 
the average for the ocean floors. Dating of volcanic islands associated with mid- 
oceanic ridges indicates that they have been convected away from their origin 
(Wilson 1965). A summary of the geological arguments which favour the con- 
vective current hypothesis has been given by Girdler (1965). 

Although qualitative comparisons strongly favour the convective hypothesis, 
agreement with a quantitative theory would greatly strengthen the case. A com- 
plete analysis of the problem is prohibitively dif€icult. The heating of the interior 
of the earth causes a heat flux to the earth’s surface. This occurs in the presence 
of a radial gravitational field and the rotation of the earth. An essential question 
is whether the material behaves as a liquid and if it  does what are its properties. 
Many authors have considered these problems. It is generally accepted that the 
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earth’s mantle displays fluid behaviour and may be treated as a fluid using an 
appropriate value of the viscosity. A detailed discussion of the physical properties 
of the mantle will be given in a later section. It has been shown by Jeffreys (1928) 
that the influence of the earth’s rotation upon convection in the mantle is negli- 
gible. Jeffreys (1930) has also shown that the Boussinesq approximation may be 
used if the temperature in the Boussinesq equation is taken to be the difference 
between the actual temperature and the adiabatic temperature provided this 
temperature difference is not too large. Chandrasekhar (1961) has considered the 
effect of spherical symmetry on the problem. Since it is expected that mantle 
convection will be restricted to a thin layer it is a good approximation to analyse 
the equivalent planar problem. Also, because the layer is thin, it is appropriate 
to neglect the heat produced by radioactivity within the convecting layer. 
Models for the earth’s mantle which postulate a strong concentration of radio- 
activity near the surface are based on the assumption that heat transfer within 
the mantle is mainly by conduction and radiation. If the heat transfer is 
mainly by cellular convection there is no objection to a more uniform and deeper 
distribution of radioactive heat sources and no reason to assume a near-surface 
concentration. 

An extensive discussion of how the linearized analysis of cellular convection 
can be applied to convection in the earth’s mantle has been given by Knopoff 
(1964). In  his analysis Knopoff takes the Rayleigh number for the earth’s mantle 
to be 106-108 and the Prandtl number to be lOZ1-lO23. Therefore an analysis valid 
for large values of the Rayleigh number and Prandtl number should be applicable 
to the earth’s mantle. 

2. The steady convection solution 
A .  Basic equations 

Our goal is to solve for the steady convective flow between two horizontal 
boundaries when a body force acts downwards and the lower boundary is main- 
tained at a higher temperature than the upper boundary. The Rayleigh number 
is large compared with the critical Rayleigh number and the Prandtl number is 
large compared with one. The flow is assumed to be laminar. The Boussinesq 
approximation is used, that is, in writing the conservation equations the density 
and the coefficients (viscosity, thermal diffusivity, etc.) are assumed to be 
constant except for the density in the body force term of the momentum equa- 
tion. A linear relation is assumed between the variations of temperature and 

(1)  
density, 

where T;  is the temperature a t  which p’ = p;. Primes denote dimensional vari- 
bles. Introducing 8’ = T’ - T; and P‘ = p’ +p;gy’ the equations for conserva- 
tion of mass, momentum and energy are given by 

p‘-p; = -p;a(T’-T;), 

V’.u’ = 0, (2) 

(3) 

(4) 

ad/at’ + (u’ . V’)U’ = - (V’P/p;) + Y V ’ W  + ae’gj, 

(ae’lat’) + (u’. v’)e’ = K V ” 8 .  
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In  the absence of convective motions the solution is a linear temperature gradient 
between the horizontal boundaries. 

In  order to simplify the analysis we introduce the following non-dimensional 
variables : 

v = dv', t = t'K/d2, U = ZC'd/K, P= P'd2 /phVK,  6' = 6"/& 

where d is the distance between the horizontal boundaries and /3 is the linear 
temperature gradient which would occur in the absence of convective motions. 
Substitution of these dimensionless variables into equations (2), (3) and (4) 
gives 

( 5 )  

Pr-l((au/at)+ [u.V]u) = -VP+V2u+R6'j, (6) 

( 7 )  

v . u  = 0, 

(asiat) + (u. v ) ~  = 820, 

where R is the Rayleigh number and Pr the Prandtl number. 
Before solutions of ( 5 ) ,  (6) and ( 7 )  can be obtained, boundary conditions for 

both the velocity and temperature on the two horizontal boundaries at  y = 0 
and y = 1 are required. We will assume that the temperatures at the upper and 
lower boundaries are constant, 6' = 4 and 6' = - 4. Only free surface boundary 
conditions on the velocity will be considered, that is the tangential component 
of the shear stress a t  the horizontal boundaries is taken to be zero. Since our 
analysis will be restricted to two-dimensional flows the free surface boundary 
conditions require that aulay = 0 at y = 0 and y = 1. 

B. Xteady convection model 

For steady convective motions (6) and (7) become 

Pr-l(u. V) u = - V P  + V2u + ROj, 
(u. v) 0 = v2e. 

If the Prandtl number is large compared with one, the convective terms in the 
momentum equation may be neglected and (8) reduces to 

0 = -VP+V2u+R6'j. (10) 

This is equivalent to a small Reynolds number approximation in forced convec- 
tive flows. 

Although dropping the convection terms in the momentum equation is a con- 
siderable simplification, the equations are still h.ighly non-linear so that it is 
necessary to prescribe a model before a solution can be obtained. The model used 
in this paper is illustrated in figure 1. The fluid is confined between the planes 
y = 0 and y = 1 and is divided into cellular, two-dimensional rolls; alternate rolls 
flow in the clockwise and counterclockwise directions. The entire flow field is 
highly viscous. On the hot and cold boundary planes are thin thermal boundary 
layers. When the two hot boundary layers from adjacent cells meet they separate 
from the horizontal plane and form a plume which rises to the upper surface. 
When the hot plume comes into contact with the upper cold surface, a stagnation 
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point thermal boundary layer is formed. As the flow splits and continues along 
the cool upper surface this stagnation point boundary layer becomes the cold 
thermal boundary layer which in turn becomes part of the cold, descending plume. 
Actually there will be a series of thermal layers as the boundary layers continue 
to convect in a spiral motion. However, our analysis will be restricted to the first 

1 

T’= TL,, 
FIGURE 1. Sketch of the steady convection model showing: (1) the isothermal core, (2) 
thermal boundary layers, (3) thermal convective plumes, and (4) the stagnation point 
thermal layers. 

layer adjacent to the boundaries of the cell. The core will be assumed to be iso- 
thermal. This should be a good approximation since most of the temperature 
drop will occur in the first layer. That the boundary layers and plumes are in fact 
thin compared with the dimensions of the cell will be verified after the solution is 
obtained . 

Using this model the viscous core is isothermal and has rectangular boundaries 
since the boundary layers and plumes are thin. The flow in the core is obtained 
by solving the biharmonic equation in a rectangular region. Since the large 
viscosity precludes appreciable changes of velocity in the thin thermal layers, it 
is appropriate to  use the velocities obtained from the viscous solution in solving 
for the temperature profiles in the thermal boundary layers and convective 
plumes. The magnitude of the velocities is obtained by matching the solutions 
for the thermal layers to the solution for the core flow. 

c. 7- zscous core 

Since the boundary layers and plumes are assumed to be thin, it is appropriate 
to obtain the two-dimensional core flow in a rectangular cell with dimensions 26 
and 1. Since the core is isothermal the energy equation is not required. The equa- 
tion for conservation of momentum (10) reduces to 

- V P  + v2u = 0. (11) 
3 Fluid Meoh. 28 
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Introducing the dimensionless stream function $, u = - a$F/ay, 
and (1 1)  combine to give the biharmonic equation for the stream function 
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v = Qblax, ( 5 )  

V4$ = 0. (12) 

The biharmonic equation may be used since the body force term in the momentum 
equation vanishes in the isothermal core and the convection terms may be 
neglected compared with the viscous terms for large Prandtl numbers. The condi- 
tion that there be no flow through the boundaries of the cell requires that u = 0 
at x = 6 and v = 0 a t  y = 0, 1. The free-surface boundary conditions require 
that aulay = 0 at y = 0, 1.  From symmetry it is necessary that av/ax = 0 at 
x = 6. However, av/ax may vary considerably through the structure of the thin 
thermal plumes so that it is not appropriate to apply this boundary condition 
to the core flow. We will take av/ax = y at the outer edge of the plume and since 
the plume is thin it is appropriate to require avliix = y at x = 5 6 for the core 
solution. The value of y will be obtained from the integral of the temperature 
deficit (excess) in the convective plume. We will show that a constant value of y 
is consistent with the model. 

By separation of variables it is found that 

$ = C [sina,y(A,cosha,x+B,sinha,x 
n + C,x cosh anx + D,x sinh anx)] ( 13) 

satisfies the biharmonic equation. In  order to satisfy the required boundary con- 
ditions it is necessary that 

a, = nn (n = 1, 3, 5, 7 ,... ), 
B = C  = O ,  A =- -  2 y6 tanh nn6 D,  = 

2Y 
n2 n2 cosh nn6 ’ n2 n2 Gosh nn6 ’ n n  

and the velocity components within the viscous core are given by 

(nnS tanh nn6 cosh nnx - nnx sinh nnx) , (14) 1 2y cosnny 
u =  c [ 

n=l, 3, ... n2n2 coshnn-6 

(nnx cosh nnx + { 1 - nnS tanh nn6) sinh nn-x) . (15) 1 2 y sin nny 
v =  c [ 

3, ... n2n2 coshnn6 

Before further computations are carried out we will relate the two dimensions of 
the rectangular cell, 1 and 26. We assume that the cell size is the same as that given 
by the linear theory, namely 6 = 2-4 since 6 = h/4d and h = 23d. The vertical 
component of the dimensionless velocity at x = S = k 2 4  can now be evalu- 
ated. The ratio v/y at x = k 2-4 is plotted against y in figure 2. The mean vertical 
velocity on the boundary between cells is 

v = +0*141y. (16) 
Similarly the horizontal component of the dimensionless velocity at y = 0, 1, 
can be evaluated. The ratio u/y at  y = 0 , l  is plotted against x in figure 3. The 
mean horizontal velocity on the horizontal boundaries is 

It is seen that away from the corners the horizontal velocity is nearly constant. 
u = + 0 - 0 8 0 4 ~ .  (17) 
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D. Thermal boundary layers 
Having obtained the core flow we now turn to the thermal boundary layers on 

the upper and lower surfaces. Because of the large viscosity (large Prandtl 
number) the flow velocity will not be a function of y in the thin thermal boundary 

0 0.1 0.2 0.3 0.4 0.5 

Y 

FIGURE 2. Dependence of v/y at  the boundary between cells on y. 

0 0.1 0.2 0.3 0.4 0 5  06 0-7 
X 

FIGURE 3. Dependence of u/y at the surface on x. 

layers. We will also assume that the velocity is not a function of x and is given 
by (17). Experience with forced convection boundary layers shows that the 
constant velocity assumption should not lead to serious errors for the type of 
velocity distribution given in figure 3. Therefore we assume that u = constant 
and it follows from the continuity equation that v = 0 in the thermal boundary 
layers. 

Having prescribed the velocity, only the energy equation is required to obtain 
the temperature distribution in the thermal boundary layers. Since each thermal 

3-2 
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boundary layer is assumed to be thin, it  is appropriate to use the boundary-layer 
form of the energy equation (a2/i3y2) 9 (a2/ax2) with the result from (7 )  that 

For convenience we measure x1 from the origin of the thermal boundary layer and 
y1 is the distance from the surface. From symmetry the core temperature is the 
mean of the two surface temperatures. Taking the core temperature to be TA 
then 8 = 8' = 0 as y1+w in the thermal boundary-layer solution and 8 = 2 4 
a t  y1 = 0. The analysis is valid for both horizontal surfaces. 

A similarity solution of (18) which satisfies these boundary conditions is 

This solution is invalid near the origin of the thermal boundary layer where the 
stagnation point flow must be considered. However, many solutions of boundary- 
layer problems show that this local failure will not affect the validity of the solu- 
tion away from the vicinity of the stagnation point. It is also appropriate to 
measure x1 from the vertical boundary as long as the stagnation boundary layer 
is thin compared with the thermal boundary layer on the rest of the surface. 

The local heat flux to the surface can be expressed in terms of a local Nusselt 
number 

where qk is the local heat flux per unit area and t% is the thermal conductivity. 
The local Nusselt number obtained from (19) is 

Nu, = &(U/7rX1)+. (20) 

The thickness of the thermal boundary layer, yls, is defined as the distance to 
where 8/8, = 0.1. The maximum thickness of the thermal boundary layer is at  
x1 = 26 = 24 and from (19) is found to be 

yls = 2*79/u+. (21) 

E. Thermal convective plumes 

We next solve for the temperature distribution in the convective plumes. The 
centre-line of each plume is in fact the division between the adjacent convective 
cells. However, it  is convenient to determine the structure of the entire plume 
which in fact belongs to two adjacent cells. Since the plumes are thin, it  is 
appropriate to take v to be independent of x within the plumes. As in the hori- 
zontal boundary layer, we will assume that v is not a function of y and take the 
mean value given in (16). Therefore we take v = constant and u = 0 in the solu- 
tion for the structure of the plumes. The analysis is valid for both the hot and 
cold plumes. 

The governing energy equation is the same as for the thermal boundary layers 
except that x and y are interchanged, 

v(aeiay2) = aze/ax;, (22) 
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where y2 is the distance from the horizontal surface where the plume is formed and 
x2 is the distance from the centre-line of the plume. However, the boundary con- 
ditions for the plume structure differ from those for the boundary-layer structure. 
It is required that 8 + 0 as x2 + k 00 and the initial temperature profile, at yz = 0, 
is specified, The solution of the heat equation with these boundary conditions is 
known as Laplace's solution and is given by (see Carslaw & Jaeger 1959) 

where 8, is the initial temperature distribution at  y2 = 0. 
We assume that the initial temperature distribution in the plume is the same 

as the temperature distribution in the thermal boundary layers adjacent to the 
base of the plume at x1 = 28 = 29 with the result 

Substitution of (24) into (23) and changing the variable of integration gives 

From (25) the temperature distribution in each of the convective plumes can be 
determined. 

3'. Stagnation point  thermal boundary layers 
Where the convective plumes impinge on the horizontal surface stagnation point 
thermal boundary layers are formed. Adjacent to each stagnation point the 
velocity components are given by u = 2Ax, and v = - 2Ay3 where x3 and y3 are 
measured from the stagnation point. From figures 2 and 3 it is found that 
A 0.757. Substitution of these velocity components into the energy equation 
gives 

( 2 6 )  

We will assume that the temperature outside the stagnation point thermal 
boundary layers is the core temperature 8 = 0. The actual temperature is that 
given by the plume solution. The boundary conditions that we require are 0 = 0 
as y3 +co and 0 = + a t  y3 = 0. A similarity solution that satisfies these boundary 
conditions is obtained by setting 0 = B(y3) with the result 

1*5')"X3(@/aS,) - y,(a8/&J3)] = (a20/h: )  + (a26'/8Y$). 

- l-5yy3(d8/dy,)  = dW/dy:. 

The solution of this equation is 

The corresponding value for the local Nusselt number valid in the vicinity of the 
stagnation point is 

NU, = ( 0 * 7 5 y / ~ ) 3 .  (29) 
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If we define the thickness of the stagnation point thermal boundary layer, yS6, 
to be the distance to where O/e, = 0.1, we obtain 

y38 = 1.64/(1*57)4. (30 )  

G .  Matching of solutions 

It is now necessary to evaluate the constant y which remains an unknown in the 
core solution and determines the magnitude of the convective velocities. In order 
to obtain the appropriate boundary condition on &/ax at x = -t 6 we write the 
y-component of the momentum equation valid within the convective plume, 
from ( l o ) ,  

Within the thin convective plume it is consistent to neglect both a2v/ay2 and 
aP/ay compared with Re. Integrating the momentum equation noting that 
av/ax = 0 on the centre-line of the plume, we obtain 

(azv/aXz) + (azvlag)  = (aqay) -Re. (31)  

and y is proportional to the integral of the temperature deficit (excess) in the 
plume. Since there is no heat addition to the plume y is independent of y2 and is 
independent of the plume structure because the initial temperature distribution 
at  yz = 0 can be used to evaluate the integral in (32 ) .  Substitution of (24 )  into 
(32 )  and integrating gives 

Substituting (33 )  into (17) and solving for u gives the mean dimensionless velocity 
on the horizontal boundaries 

= 0*671(R/u*).  (33 )  

u = 0.142R8. (34 )  

y = 1.78R8, (35 )  

v = 0.250Rb. (36)  

Substitution of (34 )  into (33 )  gives 

and substitution of (35 )  into (16 )  gives the mean dimensionless vertical velocity 
on the boundaries between cells 

Having obtained the dimensionless velocities, it is now possible to determine 
the local heat flux to the boundaries expressed in terms of a local Nusselt number. 
The local Nusselt number of the thermal boundary layers is obtained by sub- 
stituting (34 )  into (20) 

The local Nusselt number for the stagnation point thermal boundary layer is 
obtained by substituting (35 )  into (29 )  

NU, = 0*106(R*/xt) .  (37)  

Nul = 0*652R&. (38)  

To a first approximation it is appropriate to assume that (38 )  replaces (37 )  when 
the Nusselt number obtained from (38)  is smaller than the Nusselt number 
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obtained from (37), that is for x1 < 0.0364. The Nusselt number for the total heat 
transfer between the horizontal surfaces is obtained by taking the mean value of 
the local Nusselt number over the cell. Using the values of the local Nusselt 
number given above, the total Nusselt number is 

The maximum thickness of the thermal boundary layer is obtained by sub- 
stituting (34) into (21) 

Since yls is the ratio of the actual thickness to the distance between the horizontal 
boundaries, yls must be small compared with one for the boundary layer hypo- 
thesis to be valid. From (40) we see that the boundary layers are thin for suffici- 
ently large values of the Rayleigh number. Since the thickness of the convective 
plumes are of the same order as the thickness of the boundary layers, the plumes 
will also be thin for large values of the Rayleigh number. Substitution of (35) into 
(30) gives the non-dimensional thickness of the stagnation point thermal boundary 
layer 

y16 = 7*38/RS. (40) 

y36 = 1*OO/R). (41) 

3. Application to mantle convection 
Before the theory developed for cellular convection can be applied to mantle 

convection we must obtain values for such properties as the thermal diffusivity, 
the kinematic viscosity, and the coefficient of volume expansion. The distance d 
over which mantle convection occurs must be prescribed and the temperatures 
on the boundaries must be given. Some of these quantities are not well known and 
some vary in an unknown manner. For these reasons close agreement between 
observed phenomena and theoretical predictions must be regarded as somewhat 
fortuitous. 

Probably the most serious uncertainty relates to the kinematic viscosity v. 
This problem is discussed by McConnell (1965) and following him and others a 
value of cm2/sec is chosen; this, however, is subject to an uncertainty of one 
or two orders of magnitude. In  comparison, the uncertainties in the other vari- 
ables are less important. Following Verhoogen (1958), Knopoff (1964), Jaeger 
(1965) and Tozer (1965), the following values are assigned: coefficient of thermal 
expansion, a, 2 x 10-5OK-l; average thermal gradient in excess of the adiabatic 
gradient, /3, 1.5 x cm2/sec. The accelera- 
tion due to gravity remains approximately constant with depth, g = lo3 cm/sec2, 
and the depth of the convecting layer, d,  is taken to be 1.5 x 10scm correspond- 
ing to a cell width, 264  of 2100km. These values give a Rayleigh number 
R = 1.5 x 106. This value of the Rayleigh number is uncertain by a t  least one 
order of magnitude. Virtually all published values for the Rayleigh number valid 
for the earth's mantle fall in the range lo5 to lo8. 

Using R = 1.5 x lo6 and the values of K and d given above, the mean horizontal 
velocity on the surface is found from (34) to be 1-24 x lo-' cmlsec. This value is 

OK/cm; thermal diffusivity, K ,  
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in excellent agreement with the velocities of continental drift obtained from 
paleomagnetic and other evidence; e.g. lo-' cmlsec Tozer (1965), 1-25 cm/yr 
Orowan (1965), 3-5 cm/yr Allen (1965). It should be emphasized that such 
excellent agreement must be considered fortuitous. 

From (37) and (38) the local Nusselt number can be determined for the heat 
flux to the surface above the ascending limb and as a function of the distance 

OO O 
0 

0 0  80 

0 0 1  0.2 0.3 0-4 0.5 0.6 0.7 
X 

FIGURE 4. Comparison between the measured values of Nusselt number at  various dimen- 
sionless distances from the East Pacific Rise and theory for a Rayleigh number of 1.5 x 106. 
0, Lee & Uyeda (1965); -, equation (37); -- -, equation (38). 

from the ascending limb. The predicted heat flux can be compared with measure- 
ments made on the ocean floors. In  figure 4 the measured values of the Nusselt 
number are plotted against the dimensionless distance from the crest of the East 
Pacific Rise. The experimental points are taken directly from a figure published 
by Lee & Uyeda (1965). The Nusselt numbers are determined from the measured 
heat fluxes using the values of parameters given above and a thermal conductiv- 
ity, k, of 6 x 10-3caI/cm see O K  (Clark & Ringwood 1964; Jaeger 1965; Mc- 
Donald 1965). Also included in figure 4 are the Nusselt numbers given by (37) 
and (38) for a Rayleigh number of 1-5 x 106. It is seen that agreement between 
theory and experiment is excellent considering the scatter in the measurements. 
Since the heat transfer is dependent on the one-third power of the Rayleigh 
number, the theoretical predictions should be accurate to less than an order of 
magnitude. 

Although high values of q, and thus Nu,, are measured only in the central parts 
of the Rise, low values are measured everywhere and there is a resultant wide 
scatter of points. This is caused in part by the plotting together of data from 
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different areas of the ridge system. However, the principal reason for the scatter 
may be due to the mechanism of heat transfer in the axial zones of the ridges. 
As crystalline silicate compounds are convected upwards in the ascending limb 
of a convective cell, partial melting through pressure release is expected to occur 
at a depth of about 100 km. As a result, molten silicate rises to the surface where 
it is extruded as submarine, basaltic lava up to distances of 300 km from the 
ridge crest. Low values of heat flux in the axial zone have probably been measured 
in areas where there has been recent rapid deposition of debris after submarine 
volcanic explosions. 

4. Discussion and conclusions 
It would be desirable to correlate the theory given in this paper with laboratory 

experiments. Silveston (1958) has measured the total heat transfer between two 
surfaces at  a Prandtl number of 3000 and Rayleigh numbers up to 30,000. How- 
ever, these experiments were carried out between parallel disks so that the free- 
surface boundary conditions used in the present analysis are invalid. At large 
Prandtl and Rayleigh numbers Silveston observed irregular elongated rolls 
which resemble the cell structure associated with mantle convection. 

The question of transition to turbulent convection should also be considered. 
With the large Prandtl numbers for mantle convection, any kind of viscous 
transition to turbulence will certainly be inhibited. The laboratory experiments 
have not been carried out at sufficiently high Prandtl and Rayleigh numbers to 
verify this suppression of turbulence. The elongated rolls associated with mantle 
convection would indicate that the flow is laminar. 

The agreement between the theory presented in this paper and measurements 
associated with mantle convection is certainly satisfactory. The free-surface 
boundary condition used in the analysis is valid for the upper surface in mantle 
convection. However, the appropriate boundary condition for the lower surface 
in mantle convection is far less certain. It is expected that the properties of the 
mantle such as viscosity may vary considerably with depth. Since the appropriate 
values are not well known, it is questionable whether a theory taking into account 
the variation of the properties of the mantle is required. 

It seems reasonable to conclude that the quantitative agreement between 
theory and measurement given in this paper strongly favours the hypothesis of 
mantle convection. The quantitative distribution of velocities and temperatures 
which the theory provides should help the understanding of processes both on 
and beneath the earth’s surface. 

This work was carried out while one of the authors (D. L. T.) held a National 
Science Foundation Postdoctoral Research Fellowship. 
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